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Abstract

Numerical calculations are carried out for natural convection induced by a temperature difference between a cold outer square enclo-
sure and a hot inner circular cylinder. A two-dimensional solution for unsteady natural convection is obtained, using the immersed
boundary method (IBM) to model an inner circular cylinder based on the finite volume method for different Rayleigh numbers varying
over the range of 103–106. The study goes further to investigate the effect of the inner cylinder location on the heat transfer and fluid flow.
The location of the inner circular cylinder is changed vertically along the center-line of square enclosure. The number, size and formation
of the cell strongly depend on the Rayleigh number and the position of the inner circular cylinder. The changes in heat transfer quantities
have also been presented.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection in an enclosure is relevant to many
industrial and environmental applications such as heat
exchangers, nuclear and chemical reactors, cooling of elec-
tronic equipment, and stratified atmospheric boundary lay-
ers. In engineering applications, the geometries that arise,
however, are more complicated than a simple enclosure
filled with a convective fluid. The geometric configuration
of interest is with the presence of bodies embedded within
the enclosure. (Lacroix [1]; Ghaddar and Thiele [2]; Saha
[3]; Ding et al. [4]).

Many investigations have dealt with the presence of a
body with various thermal conditions on natural convec-
tion within a square enclosure with either a horizontally
(Ha et al. [5,6]; Lee et al. [7–9]) or vertically (Hyun and
Lee [10]; Misra and Sarkar [11]; Wright et al. [12]; McBain
[13]; Jami et al. [14]; Ha and Jung [15]) imposed tempera-
ture difference or heat flux.
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The similarly relevant case of natural convection that
occurs from a heated body placed concentrically or eccen-
trically inside a cooled enclosure has received much less
attention.

Asan [16] numerically studied two-dimensional natural
convection in an annulus between two isothermal concen-
tric square ducts and obtained solutions up to a Rayleigh
number of 106. The results showed that dimension ratio
and Rayleigh number have a profound influence on the
temperature and flow field.

Kumar De and Dalal [17] considered the problem of
natural convection around a square, horizontal, heated cyl-
inder placed inside an enclosure in the range of 103

6

Ra 6 106. Effects of the enclosure geometry have been
assessed using three different aspect ratios placing the
square cylinder at different heights from the bottom. As a
result, it was found that the uniform wall temperature heat-
ing is quantitatively different from the uniform wall heat
flux heating. The flow pattern and thermal stratification
were modified, if the aspect ratio was varied. Overall heat
transfer also changes as a function of aspect ratio.

Ghaddar [18] reported the numerical results of natural
convection from a uniformly heated horizontal cylinder
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Nomenclature

fi momentum forcing
g gravity
h heat source or sink
L wall length
Lc length around circular cylinder
n normal direction to the wall
Nu local Nusselt number
NuB surface-averaged Nusselt number at the bottom

wall of square enclosure
Nuc surface-averaged Nusselt number of circular cyl-

inder
Nuen surface-averaged Nusselt number of square

enclosure
NuS surface-averaged Nusselt number at the side

wall of square enclosure
NuT surface-averaged Nusselt number at the top wall

of square enclosure
P pressure
Pr Prandtl number
q mass source or sink
r radius of circular cylinder
Ra Rayleigh number
S distance along the square enclosure

t time
T dimensional temperature
Th high temperature
Tc low temperature
u, v velocity components in x and y directions
W surface area of walls
x, y Cartesian coordinates

Greek symbols

a thermal diffusivity
b thermal expansion coefficient
d distance from center of square cylinder to circu-

lar cylinder center
di2 kronecker delta
q density
m kinematic viscosity
u angle of circular cylinder
h dimensionless temperature

Sub/Superscripts
* dimensionless value
– surface-averaged quantity
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placed in a large air-filled rectangular enclosure. He
observed that flow and the thermal behaviors depend on
heat fluxes imposed on the inner cylinder within the iso-
thermal enclosure. He also obtained a correlation of the
average Nusselt number as a function of Rayleigh
number.

Cesini et al. [19] performed the numerical and experi-
mental analysis of natural convection from a horizontal
cylinder enclosed in a rectangular cavity. The influence of
the cavity aspect ratio and the Rayleigh number on the dis-
tribution of temperature and Nusselt number was investi-
gated. As a result, the average heat transfer coefficients
increases with increasing Rayleigh number.

Moukalled and Acharya [20] and Shu and Zhu [21] stud-
ied the change of the thermo-flow field between the low
temperature outer square enclosure and high temperature
inner circular cylinder according to the radius of the inner
circular cylinder. Moukalled and Acharya [20] considered
three different aspect ratios, r/L of the cylinder radius, r
to the enclosure height, L in the range of 104

6 Ra 6 107.
They showed that, at a constant enclosure aspect ratio,
the total heat transfer increases with increasing Rayleigh
number. When the Rayleigh number is constant, the con-
vection contribution to the total heat transfer decreases
with an increasing aspect ratio value. Shu and Zhu [21]
obtained the numerical results for Rayleigh numbers rang-
ing from 104 to 106 and aspect ratios between 1.67 and 5.0.
It was found that both the aspect ratio and the Rayleigh
number are critical to the patterns of flow and thermal
fields. Also, they suggested that a critical aspect ratio
may exist at high Rayleigh numbers to distinguish the flow
and thermal patterns.

Shu et al. [22] numerically studied natural convection
between an outer square enclosure and an inner circular
cylinder according to the eccentricity and angular position
of the inner circular cylinder at a Rayleigh number of
3 � 105. Natural convection between arbitrary eccentric
cylinders for Ra = 3 � 105 and a specified aspect ratio of
r/L was systematically analyzed, including the effects of
an outer cylinder position on the average Nusselt number,
flow and thermal fields. It was found that the global circu-
lation, flow separation and the top space between the
square outer enclosure and the circular inner cylinder have
significant effects on the plume inclination.

However, there is little information about natural con-
vection processes when a heated circular cylinder exists
within a cooled square enclosure and the location of the
inner heated circular cylinder is changed along the vertical
centerline of the square enclosure. In this situation, the
flow and heat transfer in the enclosure are largely affected
by the location of the inner circular cylinder for different
Rayleigh numbers. The purpose of the present study is to
examine how the position of the inner circular cylinder
relative to the outer square cylinder affects the natural
convection phenomena for different Rayleigh numbers
when a hot inner circular cylinder is located at different
positions along the vertical centerline of the outer square
cylinder.
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2. Numerical methodology

A schematic of the system considered in the present study
is shown in Fig. 1. The system consists of a square enclosure
with sides of length L, within which a circular cylinder with
a radius R(=0.2 L) is located and moves along the vertical
centerline in the range from �0.25 L to 0.25 L. The walls
of the square enclosure was kept at a constant low temper-
ature of Tc, whereas the cylinder was kept at a constant high
temperature of Th. In this study, we assume that the radia-
tion effects are negligible. The fluid properties are also
assumed to be constant, except for the density in the buoy-
ancy term, which follows the Boussinesq approximation.
The gravitational acceleration acts in the negative y-direc-
tion. The immersed boundary method is used to handle
the inner circular cylinder, which is located at different posi-
tions along the vertical direction, in Cartesian coordinates.
Therefore, the governing equations describing unsteady
incompressible viscous flow and the thermal fields in the
present study are the continuity, momentum and energy
equations in their non-dimensional forms defined as
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The dimensionless variables in the above equations are de-
fined as

t ¼ t�a

L2
; xi ¼

x�i
L
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a
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ð4Þ
Fig. 1. Computational domain and coordinate system along with bound-
ary conditions.
in the above equations, q, T and a represent the density,
dimensional temperature and thermal diffusivity. The
superscript * in Eq. (4) represents the dimensional vari-
ables. ui, p, t, xi and h are the non-dimensional velocity,
pressure, time and temperature. The above non-dimension-
alization results in two dimensionless parameters: Pr ¼ m

a

and Ra ¼ gbL3ðT h�T cÞ
ma where m, g and b are the kinematic

viscosity, gravitational acceleration and volume expansion
coefficient. In the simulations to be reported here the Pra-
ndtl number, Pr, and r(=R/L) have been taken to be 0.7
corresponding to that of air and 0.2, respectively. The Ray-
leigh number, Ra, varies in the range of 103–106. The
dimensionless vertical distance d, which represents the po-
sition of the inner cylinder along the vertical centerline,
varies in the range of �0.25–0.25.

The mass source/sink q in Eq. (1) and momentum forc-
ing fi in Eq. (2) are applied on the body surface or inside
the body to satisfy the no-slip condition and mass conser-
vation in the cell containing the immersed boundary. In
Eq. (3), the heat source/sink h is applied to satisfy the
iso-thermal boundary condition on the immersed
boundary.

A two-step time-split scheme was used to advance the
flow field. This scheme was based on the previous works
of Kim and Moin [23] and Zang et al. [24]. First the veloc-
ity is advanced from time level ‘n’ to an intermediate level
‘*’ by solving the advection-diffusion equation without the
pressure term. In the advection-diffusion step, the nonlin-
ear terms are treated explicitly using the third-order
Adams–Bashforth scheme. The diffusion terms are treated
implicitly using Crank–Nicolson scheme. Then the Poisson
equation for pressure, which is derived by using mass con-
servation, is solved fully implicitly. Once the pressure is
obtained, the final divergence-free velocity field at ‘n + 1’
is obtained with a pressure-correction step. The tempera-
ture field is advanced in a similar manner with the third-
order Adams–Bashforth scheme for the advection term
and the Crank–Nicolson scheme for the diffusion term.

The central difference scheme with second-order accu-
racy based on the finite volume method is used for the spa-
tial discretization. Additionally, a second-order linear or
bilinear interpolation scheme is applied to satisfy the no-
slip and isothermal conditions on the immersed boundary.
Further details of the immersed-boundary method are
given in Kim et al. [25] and Kim and Choi [26].

For the velocity field, the no-slip and no-penetration
boundary conditions are imposed on the walls. The hot
and cold wall temperatures of h = 0 and 1 are imposed
on the walls of the enclosure and the inner cylinder wall,
respectively.

Once the velocity and temperature fields are obtained,
the local, surface-averaged, time-averaged, and time-and-
surface-averaged Nusselt numbers are defined as
Nu ¼ oh
on

����
wall

; Nu ¼ 1

W

Z W

0

Nu dS ð5Þ



Fig. 2. A typical grid distribution for d = 0.
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where n is the normal direction with respect to the walls, W

is the surface area of walls.
Fig. 2 shows the computational geometry in the x � y

plane with a non-uniform grid distribution. A grid resolu-
tion of 201 � 201 along horizontal (x) and vertical (y)
directions was employed in computations to be reported
in this present study. The grids were nonuniformly distrib-
uted near the walls in order to account for the high gradi-
ents using the algebraic function. The denser grid lines were
uniformly distributed within the cylinder. In order to con-
sider the variation of d, the number of grid points used in
the y direction is tuned to maintain the dense resolution
near the walls and within the inner cylinder. Grid indepen-
dence of the solution has been tested with additional simu-
lations on much finer grids up to 301(x) � 301(y) points.
The difference in the results of Nusselt number obtained
using the coarse and fine grids was less than 0.3%.

For the purpose of code validation, the natural convec-
tion problem for a low temperature outer square enclosure
and high temperature inner circular cylinder was tested.
The calculated surface-averaged Nusselt numbers for the
test case are compared with the benchmark values by
Moukalled and Acharya [20] as shown in Table 1. The
Table 1
Comparison of present surface-averaged Nusselt number with those of
previous numerical studies

Ra Mean Nusselt number at hot wall Difference (%)

Present study Moukalled and Acharya [16]

104 3.414 3.331 �2.49
105 5.1385 5.08 �1.15
106 9.39 9.374 �0.17
107 15.665 15.79 0.79
present surface-averaged Nusselt numbers are in good
agreement with the values of Moukalled and Acharya [20].
3. Result and discussion

3.1. Flow and thermal fields when d = 0

Fig. 3 shows the isotherms and streamlines for different
Rayleigh numbers when the inner circular cylinder is
located at the center of the square enclosure corresponding
to d = 0. For all Rayleigh numbers considered in this
study, the flow and thermal fields eventually reach steady
state with the symmetric shape about the vertical center
line through the center of the inner circular cylinder. Thus,
the present problem has a two-fold symmetry about the
vertical center line at x = 0. In other words, the governing
equations given in Eqs. (1)–(3) and the boundary condi-
tions are invariant to the following transformation:

Symmetry about x ¼ 0 : fu; v; h; x; yg  f�u; v; h;�x; yg
ð6Þ

The above two-fold symmetry of the problem can be seen
in the steady flow and thermal fields. Thus the steady solu-
tions of all the Rayleigh numbers considered in this study
obey the underlying symmetries of the problem.

In general, the heated lighter fluid is lifted and moves
upward along the hot surface of the inner cylinder and
the vertical symmetry line until it encounters the cold top
wall. Then the fluid becomes gradually colder and denser
while it moves horizontally outward in contact with the
cold top wall. Consequently, the cooled denser fluid des-
cends along the cold side walls.

For Ra = 103, the heat transfer in the enclosure is
mainly dominated by the conduction mode. The circulation
of the flow shows two overall rotating symmetric eddies
with two inner vortices respectively as shown in Fig. 3a
for the streamlines. At Ra = 104, the patterns of the iso-
therms and streamlines are about the same as those for
Ra = 103. However, a careful observation indicates that
the thermal boundary layer on the bottom part of cylinder
is thinner than that on the opposite side and the inner
lower vortex slightly becomes smaller in size and weaker
in strength compared with the upper one, because the effect
of convection on heat transfer and flow increases with
increasing the Rayleigh number.

As the Rayleigh number increases up to 105, the role of
convection in heat transfer becomes more significant and
consequently the thermal boundary layer on the surface
of the inner cylinder becomes thinner. Also, a plume starts
to appear on the top of the inner cylinder and as a result
the isotherms move upward, giving rise to a stronger ther-
mal gradient in the upper part of the enclosure and a much
lower thermal gradient in the lower part. In consequence,
the dominant flow is in the upper half of the enclosure,
and correspondingly the core of the recirculating eddies is
located only in the upper half. At this Rayleigh number,



Fig. 3. Isothermals and streamlines at d = 0.0 for four different Rayleigh numbers of (a) 103, (b) 104, (c) 105 and (d) 106.
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the flow filed undergoes a bifurcation where two inner vort-
icies merge. The flow at the bottom of the enclosure is very
weak compared with that at the middle and top regions,
which suggests stratification effects in the lower regions of
the enclosure.

At Ra = 106, the heat transfer in the enclosure is mainly
governed by the convection mode. Since the convection
velocity significantly increases with increasing Rayleigh
number, the boundary layer behavior can be clearly
observed in regions of the lower part of cylinder and the
upper part of the enclosure as shown in isotherms of
Fig. 3d. The thermal boundary layer separates from the
surface near the top of the cylinder and as a result a strong
plume appears. As a result, the flow strongly impinges on
the top of the enclosure, which also leads to form a thinner
thermal boundary layer in this region and enhances the
heat transfer. Tiny symmetric vortices appear in the vicin-
ity of the bottom wall of the enclosure owing to the sepa-
ration of the boundary layer by the strong convective flow.

3.2. Flow and temperature fields as a function of d

3.2.1. Ra = 103

The dependence of the flow and thermal fields on d can
be observed in the plots of the isotherms and streamlines
for the different ds at Ra = 103 shown in Fig. 4. Fig. 4a–e
and f–j show the distribution of the isotherms and stream-
lines when the inner cylinder moves downward and upward
at the same intervals of 0.05, respectively. Regardless of the
d variation, the solutions have a two-fold symmetry about
the vertical center line at x = 0 corresponding to Eq. (6).

Because conduction is the dominant mode of heat trans-
fer at this low Rayleigh number, the distribution of the flow
and thermal fields in the left column of Fig. 4 for the neg-
ative d value shows the symmetric shapes about the hori-
zontal center line at y = 0, compared with that in the
right column for the corresponding positive d value.

When the cylinder moves downward decreasing d, the
size of the lower inner vortex is reduced gradually and
the two inner vortices merge into a single vortex at
d = �0.15 because the space between the inner cylinder
and the bottom wall of the enclosure diminishes in size.
On the other hand, the size of the upper inner vortex
increases and its core moves toward the center of the enclo-
sure because the enclosure can secure enough space to
enlarge the circulation of the upper inner vortex. As d
becomes more negative, the isotherms become denser in
between the lower part of the inner cylinder and the bottom
wall, whereas they become coarser in the opposite region.

As the inner cylinder moves upward from the center of
the enclosure, the thermal and flow fields in Fig. 4f–j show
the symmetric shape about the horizontal center line at
y = 0, compared with those as the inner cylinder moves
downward as shown in Fig. 4a–e.

3.2.2. Ra = 104

Fig. 5 shows the distribution of isotherms and stream-
lines for different ds when Ra = 104. As Ra increases to
104, the effect of convection on heat transfer becomes lar-
ger than that at Ra = 103. Thus, the distribution of flow
and thermal fields in the left column of Fig. 5 for the neg-
ative d value shows the asymmetric shapes about the hor-
izontal center line at y = 0, compared with that in the
right column for the corresponding positive d value.
When the cylinder moves downward, the two inner vorti-
ces merge into a single vortex at d = �0.1, which is earlier
than d = �0.15 at Ra = 103. As d increases as a negative
value, the isotherms are gradually distorted and the size
of the thermal plumes formed on the top of the inner cyl-
inder becomes larger.



Fig. 4. Isothermals and streamlines for different ds at Ra = 103 (Contour values range from 0.1 to 1 with 10 levels).
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When the cylinder moves upward, the bifurcation from
the inner bi-cellular vortices to the uni-cellular vortex
occurs at d = 0.15, which is later than that for the case
when the cylinder moves downward. This is because a
stronger convective flow exists in the region between the
hot inner cylinder and top wall of the enclosure. When
we increase d further, the eyes of the two vortices move clo-
ser to the center of the enclosure and the two vortices
formed in the enclosure are much more obligated than
the case when the inner cylinder moves downward, which
is clearly illustrated by comparing the streamlines at
d = �0.25 and d = 0.25 as shown in Fig. 5e and j, respec-
tively. Since the stronger convective flow is confined in
the upper half of the enclosure, the stagnation region with



Fig. 5. Isothermals and streamlines for different ds at Ra = 104 (Contour values range from 0.1 to 1 with 10 levels).
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the cold heavy fluid is formed at the bottom half, resulting
in the poorer heat transfer, when the inner cylinder moves
upward.

3.2.3. Ra = 105

Fig. 6 shows the distribution of isotherms and stream-
lines for different ds when Ra = 105. When the inner cylin-
der is placed at the center (d = 0) as shown in Fig. 3, the
flow changes its pattern from bi-cellular vortices at
Ra = 103 and 104 to an uni-cellular vortex at Ra = 105.
When the inner cylinder moves vertically at Ra = 105, the
pattern of major vortices formed in the enclosure is also
uni-celluar as shown in Fig. 6, similar to the case of
d = 0. The distribution of the isotherms in the enclosure



Fig. 6. Isothermals and streamlines for different ds at Ra = 105 (Contour values range from 0.1 to 1 with 10 levels).
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at Ra = 105 is significantly different from that at the lower
Rayleigh numbers because the buoyancy induced convec-
tion becomes more predominant than conduction.

When the inner cylinder moves downward from the cen-
ter of the enclosure corresponding to the cases of Fig. 6a–e,
more spaces between the hot inner cylinder and the top
cold wall of the enclosure are secured, enhancing the buoy-
ancy induced convection. Thus isotherms move upward
and larger plumes exist on the top of the inner cylinder,
which gives rise to the stronger thermal gradient on the
top of the enclosure. The dominant flow is formed at the
upper half of the enclosure, locating the core of the recircu-
lating eddies in the upper half. The stagnant region under
the inner cylinder decreases as d becomes more negative,
except for the two bottom corners of the enclosure.

When the inner cylinder moves upward, the pattern of
isotherms and streamlines is much different from that when
the inner cylinder moves downward. After the cylinder
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moves upward from d = 0.05 where the inner cylinder is
located slightly above the center of the enclosure, isotherms
at the upper half of the enclosure are slightly squeezed and
the temperature value at the vertical center line is lower
than that at the same elevation close to the vertical center-
line. Thus when d = 0.05, a plume shown in Fig. 3c at
d = 0.0 is divided into three plumes as shown in Fig. 6f.
Two upwelling plumes appear on the top of the inner circu-
lar cylinder at about ±25� from the vertical centerline. A
third plume appears above the top of the inner circular cyl-
inder with reverse direction owing to the two secondary
vortices newly generated over the upper part of the inner
circular cylinder. As d increases further, the reduced space
above the top of the inner cylinder confines the vertical
motion of flow and consequently the heat conduction is
predominant over the convective heat transfer locally in
this space. Thus, the secondary two vortices over the top
of the inner cylinder decreases in size and finally disappears
at d = 0.2, and accordingly no third plume is found at this
d. The primary symmetric eddies are squeezed and elon-
gated vertically as the inner cylinder moves upward, which
can be compared with the cases of the cylinder moving
downward.

3.2.4. Ra = 106

Fig. 7 shows the distribution of isotherms and stream-
lines for different ds when Ra = 106. When the Rayleigh
number increases to 106, the magnitude of the velocity cir-
culating in the enclosure increases and the isotherms are
distorted more due to the stronger convection effects, lead-
ing to the stable stratification of the isotherms. As a result
the thickness of the thermal boundary formed on the sur-
faces of the inner cylinder and the enclosure becomes thin-
ner and the thermal gradients on the walls become larger
when Ra = 106, compared to those when Ra = 105.

When the center of the inner cylinder is placed below the
center of the enclosure, d < 0, the distribution of the iso-
therms and streamlines for different ds shows a similar pat-
tern with the large upwelling plumes on the top of the inner
cylinder and the two main rotating symmetric eddies whose
core is located at the upper half of the enclosure. When
d < 0, this feature at Ra = 106 is very similar to that at
Ra = 105, except that the temperature gradients formed
on the surfaces of the cylinder and enclosure when
Ra = 106 are sharper than those when Ra = 105. When
d < 0, the vortices, which exist around the center of the bot-
tom wall when d P 0, disappear as the space decreases
between the inner cylinder and the bottom wall.

When the inner cylinder moves upward at Ra = 106, sec-
ondary vortices are formed on the top surface of the inner
cylinder in addition to the main vortices, similar to the case
of Ra = 105. The size of the secondary vortices at Ra = 106

is larger than that at Ra = 105 because of the stronger con-
vection effects of the increased Rayleigh number.

When d = 0.05, we can observe the descending plume on
the top surface of the inner cylinder and two ascending
plumes on the upper part of the inner cylinder at the posi-
tion around 30� from the vertical centerline, corresponding
to the secondary vortices formed on the upper surface of
the inner cylinder. When d = 0.05, the size of the secondary
vortices and the distance from the vertical centerline to the
ascending plume at Ra = 106 become larger, compared to
those at Ra = 105, due to the increasing convection effects
with the increasing Rayleigh number. When d = 0.05 at
Ra = 106, we can also observe the formation of additional
vortices on the bottom wall of the enclosure, which is not
present when d < 0 at the same Rayleigh number. The size
of the vortices formed on the bottom wall and the distance
from the center to the separation point at d = 0.05 becomes
larger, compared to those at d = 0.

When d increases further to 0.1 and 0.15, the isotherms
are a little squeezed as the space decreases between the
inner cylinder and the top wall of the enclosure, but the
shapes of the isotherms and streamlines are generally sim-
ilar to those at d = 0.05. The size of the secondary vortices
formed on the upper surface of the inner cylinder at d = 0.1
and 0.15 is smaller than that at d = 0.05, whereas the size of
the additional vortices formed on the bottom wall becomes
larger, compared to those at d = 0.05.

At d = 0.2, at Ra = 105, the secondary vortices on the
upper surface of the inner cylinder disappear as shown in
Fig. 6i. However, as the Rayleigh number increases to
106 at d = 0.2, the tertiary vortices are formed on the top
surface of the inner cylinder in addition to the secondary
vortices with the presence of three upwelling and two
downwelling plumes on the upper surface of inner cylinder,
even though the space between the inner cylinder and the
top wall of the enclosure becomes smaller, as shown in
Fig. 7i. The additional vortices which are present on the
bottom wall at 0 6 d 6 0.15 disappear at d = 0.2, because
the convective flow is not strong enough to penetrate the
increased space below the bottom of the inner cylinder
and as a result the separation of the boundary layer on
the bottom wall doesn’t occur.

When d = 0.25, the space between the inner cylinder and
the top wall of the enclosure is very small. As a result the
two pairs of the vortices formed on the upper surface of
the inner cylinder at d = 0.2 merge into a pair of secondary
vortices. Thus there are a single downwelling and two
upwelling plumes on the upper surface of the inner cylin-
der. The shape of the main vortices at d = 0.25 is generally
similar to that at d = 0.2.

3.3. Trajectory of the center of the rotating eddies as a
function of d

Fig. 8 shows the trajectory of the center of the main
rotating vortices in the x � y plane for different ds at four
different Rayleigh numbers. Since the flow and thermal
fields are symmetric about the vertical center line at x = 0,
the trajectories of the center of the vortices in the right half
of the enclosure are depicted in Fig. 8. As mentioned above,
the bifurcation from the bi-cellular vortices to the uni-cellu-
lar vortex occur at the low Rayleigh numbers of 103 and 104.



Fig. 7. Isothermals and streamlines for different ds at Ra = 106 (Contour values range from 0.1 to 1 with 10 levels).

B.S. Kim et al. / International Journal of Heat and Mass Transfer 51 (2008) 1888–1906 1897
The bi-cellular vortices with two inner vortices in the upper
and lower half regions appear in the range of �0.1 6
d 6 0.1 when Ra = 103 and �0.05 6 d 6 0.1 when 104,
respectively. At these low Rayleigh numbers, flow is
strongly confined by the size of the space depending on
the location of the inner cylinder because of weak convec-
tion. As a result, when the inner cylinder is close to the bot-
tom wall, the increased space over the top of the inner
cylinder leads to form the flow in the upper half. The oppo-
site is also true as shown in Figs. 4 and 5 at Ra = 103 and
104, respectively. Thus, at theses lower Rayleigh numbers,
the two trajectories are plotted in the upper half and lower
half, respectively, as show in Fig. 8a and b.

When Ra = 103, the trajectory of vortex center at the
upper half region is almost symmetric to that at the lower
half region with respect to the horizontal center line at



Fig. 8. Trajectories of the center of overall rotating eddy in the x � y plane at the different positions of the inner cylinder at four different Rayleigh
numbers.
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y = 0. The trajectory of the upper vortex center shown at
the upper part of Fig. 8a corresponds to the location of
upper inner vortex center of the bi-cellular vortices when
�0.1 6 d 6 0.1 and that of the uni-cellular vortex when
�0.25 6 d 6 �0.15. When we increase d from �0.25 to
0.1, meaning that the distance between the inner cylinder
and the bottom wall becomes larger, the center of the upper
inner vortices moves upward and outward, and becomes
more distant from the origin of the enclosure. Similarly,
the trajectory of lower vortex center shown at the lower
part of Fig. 8 corresponds to the location of the lower inner
vortex center of the bi-cellular vortices when �0.1 6
d 6 0.1 and that of the uni-cellular vortex when
0.15 6 d 6 0.25. When we increase d from �0.1 to 0.25,
the center of the lower inner vortices moves upward and
inward, and becomes closer to the origin of the enclosure.

When Ra = 104, the trajectory of vortex center at the
upper half of the region is not symmetric to that at the
lower half of the region with respect to the horizontal cen-
ter line at y = 0 unlike the case with Ra = 103, due to the
increasing effect of convection with the increasing Rayleigh
number. The trajectory of the upper vortex center shown at



Fig. 9. Local Nusselt number distribution along (a) the surface of the
inner cylinder and (b) the surfaces of the enclosure at different positions of
the inner cylinder for Ra = 103.
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the upper part of Fig. 8b corresponds to the location of the
upper inner vortex center of the bi-cellular vortices when
�0.05 6 d 6 0.1 and that of the uni-cellular vortex when
�0.25 6 d 6 �0.1. When we increase d from �0.25 to 0.1
at Ra = 104, the center of the upper inner cylinder moves
less upward with a smaller variation in the vertical direc-
tion and moves more outward with a larger variation in
the horizontal direction, compared to the movement at
Ra = 103. The trajectory of the lower vortex center shown
at the lower part of Fig. 8b corresponds to the location of
the lower inner vortex center of the bi-cellular vortices
when �0.05 6 d 6 0.1 and that of the uni-cellular vortex
when 0.15 6 d 6 0.25. When we increase d from �0.05 to
0.25 at Ra = 104, the center of the lower inner vortices
moves more upward with a larger variation in the vertical
direction and less inward with a smaller variation in the
horizontal direction, compared to the movement at
Ra = 103, showing clearly the increasing convection effect
with increasing Rayleigh number.

Unlike the cases of lower Rayleigh numbers of 103 and
104, the main vortices formed in the enclosure when
Ra = 105 and 106 have only the uni-cellular form due to
the stronger convection effect and the centers of the inner
vortices are located at the upper half of the region of the
enclosure for all ds.

When we increase d from �0.25 to 0 at Ra = 105, mean-
ing that the distance between the inner cylinder and the
bottom wall becomes larger, the center of the inner vortices
moves upward and outward, and becomes more distant
from the origin of the enclosure, as shown in Fig. 8c. When
we increase d further from 0 to 0.15, the center of the inner
vortices keeps moving outward without any significant
variations in the vertical direction due to the presence of
the secondary vortices on the upper surface of the inner cyl-
inder as shown in Fig. 6. If we increase d to 0.2 and 0.25,
the secondary eddies on the upper surface disappear and
the center of the inner vortices moves downward and
inward with a relatively large variation in both the vertical
and horizontal directions.

When we increase d from�0.25 to 0 at Ra = 106, the cen-
ter of the inner vortices moves upward with larger variation
in the vertical direction and outward with smaller variation
in the horizontal direction than the variation at Ra = 105, as
shown in Fig. 8d. When we increase d from 0 to 0.05, the cen-
ter of the inner vortices moves outward with a large varia-
tion in the horizontal direction and downward with a
small variation in the vertical direction, due to the presence
of secondary vortices on the upper surface of the inner cyl-
inder and additional vortices on the bottom wall as shown in
Fig. 7. When we increase d further from 0.05 to 0.25, the cen-
ter of the inner vortices keeps moving upward and outward.

3.4. Local Nusselt number

3.4.1. Ra = 103

Fig. 9 shows the distribution of local Nusselt numbers
along the hot surface of the inner cylinder and the cold sur-
faces of the enclosure for different ds at Ra = 103. The dis-
tribution of the local Nusselt numbers only in the right half
of the enclosure and inner cylinder is shown in Fig. 9
because of a two-fold symmetry about the vertical center
line at x = 0.

When d = 0 where the inner cylinder is located at the
center of the enclosure at Ra = 103, the isotherms show
almost a symmetric shape with respect to the horizontal
centerline at y = 0 because the dominant effect is conduc-
tion as shown in Fig. 3a, and as a result the distribution
of the local Nusselt numbers along the surface of the inner
cylinder and cold surface of the enclosure shows the sym-
metric shape with respect to u = 90� and y = 0. When
d = 0, the variation of the local Nusselt numbers along



Fig. 10. Local Nusselt number distribution along (a) the surface of the
inner cylinder and (b) the surfaces of the enclosure at different positions of
the inner cylinder for Ra = 104.
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the hot surface of the inner cylinder is very small. However,
the distribution of the local Nusselt numbers has a rela-
tively large variation along the cold surface of the enclo-
sure, compared to that along the hot surface of the inner
cylinder. The local Nusselt number has a maximum value
at point A which is the stagnation point on the top wall
of the enclosure. When we move from point A to B along
the top wall of the enclosure, the local Nusselt number
decreases and reaches a local minimum value close to zero
at point B. When we move from point B to C along the
right wall of the enclosure, the local Nusselt number
increases, reaches a local maximum value at s = 1 where
s is the distance from point A along the surfaces of the
enclosure, and decreases again until it has a local minimum
value at point C. When we move further from point C to
D, the local Nusselt number increases slightly again.

When the inner cylinder moves upward or downward at
Ra = 103, the symmetry of isotherms with respect to
u = 90� and y = 0 is broken as shown in Fig. 4 and as a
result the symmetry of the local Nusselt numbers is also
broken. As the inner cylinder moves upward with increas-
ing the value of d, the space between the inner cylinder and
the top wall decreases whereas the space between the inner
cylinder and the bottom wall increases. As a result, with
increasing value of d, the gradient of isotherms and their
corresponding distribution of local Nusselt numbers at
0� 6 u 6 90� increase whereas those at 90� 6 u 6 180�
decrease, compared to those when d = 0. The local Nusslet
number along the cold surfaces of the enclosure shows a
similar pattern with increasing d. As d increases, the local
Nusselt numbers along the cold surface at the upper half
of the enclosure of 0 6 s 6 1 increases whereas that at the
lower half of the enclosure of 1 6 s 6 2 decrease, compared
to those when d = 0. The variation of the local Nusselt
number values along the top surface of the enclosure
(region A–B) according to the variation of d is very large
whereas that along the left surface (region B–C) and the
bottom surface (region C–D) is relatively small, due to
the distribution of isotherms shown in Fig. 4.

When the inner cylinder moves downward at Ra = 103

with an increasing absolute value of d, the distribution of
the local Nusselt numbers along the hot surface of the inner
cylinder and cold surface of the enclosure shows almost
symmetric shapes with respect to u = 0� and s = 1 because
the distribution of isotherms when d < 0 is almost symmet-
ric to that when d > 0 with respect to y = 0.

3.4.2. Ra = 104

Fig. 10 shows the distribution of local Nusselt numbers
along the hot surface of the inner cylinder and the cold sur-
faces of the enclosure for different ds at Ra = 104. The val-
ues of the local Nusselt numbers at Ra = 104 are larger
than those at Ra = 103, due to increasing effect with
increasing Rayleigh number.

The distribution of the local Nusselt numbers along the
hot surface of the inner cylinder and cold surface of the
enclosure when d = 0 at Ra = 104 is not symmetric any
more with respect to u = 90� and y = 0 due to the effect
of convection, unlike the case when d = 0 at Ra = 103.
The local Nusselt number at d = 0 increases with increasing
u because the isotherms move upward slightly in the pres-
ence of convection, meaning that the local Nusselt number
at the lower surface of the inner cylinder is larger than that
at the upper surface of the inner cylinder. The variation of
the local Nusslet number along the surface of the enclosure
at d = 0 for Ra = 104 is similar to that for Ra = 103, even
though the symmetry about s = 1 is slightly broken.

In the region where the local Nusselt number at d > 0 is
larger than that at d = 0 at Ra = 104, the variation of the
local Nusselt numbers according to the variation of d has
a similar pattern to that at Ra = 103 and their values



Fig. 11. Local Nusselt number distribution along (a) the surface of the
inner cylinder and (b) the surfaces of the enclosure at different positions of
the inner cylinder for Ra = 105.
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increase with increasing d. The position where the local
Nusselt number at d > 0 is equal to that at d = 0 when
Ra = 104 is different from that when Ra = 103 and moves
to the upper position of the inner cylinder. In the region
where the local Nusselt number at d > 0 is smaller than that
at d = 0 at Ra = 104, the variation of the local Nusselt
number according to the variation of d is very small.

When the cylinder moves downward at Ra = 104, the
local Nusselt number at d < 0 is larger than that d = 0 in
most regions along the surface of the inner cylinder except
in the region close to the top surface of the inner cylinder
due to the presence of rising plume in this region. In the
region where the local Nusselt number at d < 0 is larger
than that at d = 0 at Ra = 104, the variation of the local
Nusselt numbers according to the variation of d has a sim-
ilar pattern to that at Ra = 103 and their values increase
with an increasing absolute value of d. The position where
the local Nusselt number at d < 0 is equal to that at d = 0
when Ra = 104 moves to the upper position of the inner
cylinder close to u = 0�. The shape of the local Nusselt
number distribution along the cold surface of the enclosure
for d 6 0 at Ra = 104 is generally similar to that at Ra =
103. Some differences are shown in the right wall of the
enclosure of 0.5 6 s 6 1.5. The location of the local Nusselt
number maxima is not at s = 1 but increases to the bottom
wall direction.

3.4.3. Ra = 105

Fig. 11 shows the distribution of the local Nusselt num-
bers along the hot surface of the inner cylinder and the cold
surfaces of the enclosure for different ds at Ra = 105. The
values of the local Nusselt numbers at Ra = 105 is larger
than that at Ra = 103 and 104, due to the increasing effect
of convection with increasing Rayleigh number.

When the inner cylinder moves upward at Ra = 105, the
local Nusselt number on the surface of the inner cylinder
has a maximum value at the top of the inner cylinder of
u = 0� due to the increasing thermal gradient with decreas-
ing space between the inner cylinder and the top wall of the
enclosure. As u increases from the top of the inner cylin-
der, due to the presence of the rising plume on the surface
of the inner cylinder, the local Nusselt number on the sur-
face of the inner cylinder for d > 0 decreases until it has a
minimum value and then increases again. The location, in
which the local Nusselt number has a minimum value on
the surface of the inner cylinder, becomes more distant
from the top of the inner cylinder with increasing d,
because the rising thermal plume on the surface of the inner
cylinder moves to the increasing u direction. As u increases
from the position where the local Nusselt number has a
minimum value, the value of the local Nusselt number at
d > 0 is smaller than that at d = 0 and the difference in
the local Nusselt numbers between d = 0 and d > 0 keeps
decreasing as shown in Fig. 11.

When d = 0.05, 0.1 and 0.15 at Ra = 105, the secondary
eddies are formed on the upper surface of the inner cylinder
due to the presence of upwelling and downwelling plumes.
Thus the local Nusselt number at s = 0 (point A) on the
cold surface of the enclosure when d = 0.05, 0.1 and 0.15
is not the maximum in the presence of downwelling plume
unlike to the cases of Ra = 103 and 104. When we move
from the point A to point B along the top wall of the enclo-
sure at d = 0.05, 0.1 and 0.15, the local Nusselt number
increases until it has a maximum value at the location with
the upwelling plume and then decreases until it has a min-
imum value at s = 0.5 (point B). In the region A–B along
the surface of the enclosure, the value of the local Nusselt
number when d = 0.05, 0.1 and 0.15 is smaller than that
when d = 0. When d increases to 0.2 and 0.25, the space
between the inner cylinder and the top wall of the enclosure
becomes smaller and the secondary eddies disappear. As a
result, when d = 0.2 and 0.25, the local Nusselt number at



Fig. 12. Local Nusselt number distribution along (a) the surface of the
inner cylinder and (b) the surfaces of the enclosure at different positions of
the inner cylinder for Ra = 106.
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s = 0 has a maximum value and decreases as we move from
the point A to B until it has a minimum value at s = 0.5. In
the region A–B along the surface of the enclosure, the value
of the local Nusselt number when d = 0.2 and 0.25 is larger
than that when d = 0 and increases with increasing d. When
we move from point B (s = 0.5) to point C (s = 1.5) at
d > 0, the local Nusselt number on the surface of the enclo-
sure increases until it has the maxima and then keeps
decreasing until it has a minimum value at s = 1.5. The
local Nusselt number at d > 0 does not change much and
has an almost constant value close to zero, because the
region C–D becomes stagnant when the inner cylinder
moves upward. When the inner cylinder moves upward,
the variation of the local Nusselt numbers in the region
of 0.5 6 s 6 1.5 is very small because the distribution of
isotherms is similar in this region as shown in Fig. 6.

When the inner cylinder moves downward at Ra = 105,
the local Nusselt number along the surface of the inner cyl-
inder increases generally with increasing u and has similar
patterns for different ds because the distribution of iso-
therms around the surface of the inner cylinder is similar
as d P 0 as shown in Fig. 6a–e. Due to the presence of a ris-
ing plume on the upper surface of the inner cylinder, the
local Nusselt number at d 6 0 increases rapidly in the region
around 0 6 u 6 60� followed by a slow increase in the
region around 60� 6 u 6 90�. When we move further in
the increasing u direction for different d values of �0.05,
�0.1, �0.15 and �0.2, the local Nusselt numbers increase
rapidly again around 90� 6 u 6 130� followed by the slow
decrease in the region around 130� 6 u 6 180�. However,
when d = �0.25, the local Nusselt numbers increase very
rapidly in the region around 130� 6 u 6 180� unlike the
cases at �0.2 6 d 6 0 because the isotherms are squeezed
due to the very small space between the inner cylinder and
the bottom wall.

When the inner cylinder moves downward at Ra = 105,
the local Nusselt number along the surface of the enclosure
is different from that when the inner cylinder moves
upward. Because the secondary vortices do not exist on
the upper surface of the inner cylinder, the local Nusselt
number at d < 0 has a maximum value at s = 0 (point A)
and decreases as we move from point A to point B until
it has a minimum value at s = 0.5 (point B). As the inner
cylinder moves downward, the local Nusselt number in
the region of 0 6 s 6 0.5 decreases with an increasing abso-
lute value of d because the gradient of the isotherms on the
top wall becomes smaller with increasing gap between the
inner cylinder and the top wall of the enclosure. However
the variation of the local Nusselt numbers along the top
wall of the enclosure for different ds is not large when
d < 0. ‘The local Nusselt number in the region of 0.5 6
s 6 1.5 at d < 0 has a similar distribution to that at d > 0.
The difference in the value of the local Nusselt numbers
in the region of 0.5 6 s 6 1.5 is not large for all the different
values of d. When we move from point C to point D along
the bottom wall, the local Nusselt numbers at d < 0
increases with increasing s. The local Nusselt number on
the bottom wall also increases very rapidly with increasing
absolute value of d at d < 0 because the gap between the
inner cylinder and the bottom wall keeps decreasing and
the gradient of isotherms on the bottom wall increases very
rapidly when the inner cylinder keeps moving downward.

3.4.4. Ra = 106

Fig. 12 shows the distribution of local Nusselt numbers
along the hot surface of the inner cylinder and the cold sur-
faces of the enclosure for different ds at Ra = 106. The val-
ues of the local Nusselt number at Ra = 106 are larger than
those at Ra = 103, 104 and 105, due to the strong effect of
convection with increasing Rayleigh number.

When the inner cylinder moves downward at Ra = 106,
the pattern of the local Nusselt number variation along the
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surface of the inner cylinder is similar to the case of
Ra = 105. As we move along the surface of the inner cylin-
der to the increasing u direction when d > 0, the local Nus-
selt number decreases from the maxima at u = 0 until it has
a minimum value around the location of the rising plume,
followed by the increase of its value, due to the presence of
secondary and tertiary vortices on the upper surface of the
inner cylinder. The local Nusselt number at u = 0 has the
largest value at d = 0.05 and decreases with increasing d
because the size of the secondary vortices formed on the
upper surface of the inner cylinder at d = 0.05 is larger than
that at d P 0.1. Even though the secondary vortices almost
disappear on the upper surface of the inner cylinder when
d = 0.25, the value of the local Nusselt number at u = 0
for d = 0.25 is larger than that for d = 0.2 because the
space between the inner cylinder and the top wall is small
and the isotherms are squeezed, resulting in a very dense
thermal gradient at u = 0. In the region where the local
Nusselt number increases with increasing u, the local Nus-
selt number on the surface of the inner cylinder at d > 0 is
smaller than that at d = 0 and decreases with increasing d.

When the inner cylinder moves downward at Ra = 106,
due to the presence of the secondary and tertiary vortices
on the upper surface of the inner cylinder, the local Nusselt
number in the region of 0 6 s 6 0.5 increases until it has a
maximum value around the location where the upwelling
plume impinges on the top wall of the enclosure and
decreases until it reaches the minimum value at s = 0.5.
The maximum value of the local Nusselt number in the
region of 0 6 s 6 0.5 increases with increasing d from
0.05 to 0.15, has the largest value at d = 0.15 and decreases
with increasing d from 0.15 to 0.25, due to the interaction
between the rising plume from the upper surface of the
inner cylinder and the top wall. The general shape of the
variation of the local Nusselt number according to the var-
iation of s in the region of 0.5 6 s 6 1.5 when Ra = 106 is
similar to that when Ra = 105. However, the value of the
maxima in the region of 0.5 6 s 6 1.5 when Ra = 106 is
much larger than that when Ra = 105 due to the stronger
convection effects with increasing Rayleigh number.

When the inner cylinder moves downward at Ra = 106,
the general trend of the local Nusselt number variation
along the surfaces of both the inner cylinder and the enclo-
sure is similar to that when Ra = 105. Compared to the dis-
tribution of the local Nusselt number along the surface of
the inner cylinder when d < 0 at Ra = 105, some minor dif-
ferences are observed when d = �0.25 at Ra = 106. When
d = �0.25 at Ra = 105, the local Nusselt number around
the bottom surface of the inner cylinder increases very rap-
idly as shown in Fig. 11. However, when d = �0.25 at
Ra = 106, we can observe a very small variation of the local
Nusselt number in this region unlike the case at Ra = 105,
because the strong convection at Ra = 106 forces the iso-
therms around the bottom surface of the inner cylinder
to maintain a similar pattern to that at �0.2 6 d 6 �0.05,
even though the gap between the inner cylinder and the
bottom wall is very small at d = �0.25. We can also
observe some differences on the surface of the enclosure.
Because the effect of convection is very strong at Ra =
106, the local Nusslet number in the region of 0 6 s 6 0.5
at Ra = 106 is much bigger than that at Ra = 105. The loca-
tion for the maxima of the local Nusselt number in the
region of 0.5 6 s 6 1.5 at Ra = 106 moves slightly upward,
compared to that at Ra = 105.

3.5. Surface-averaged Nusselt number

Fig. 13a shows the surface-averaged Nusselt number at
the top wall of the enclosure, NuT, as a function of d for dif-
ferent Rayleigh numbers. NuT increases generally with
increasing Rayleigh number due to the increasing effect
of convection.

When Ra = 103, the surface-averaged Nusslet number at
the top wall depends on the variation of d very much and
increases very rapidly with increasing d. When the inner
cylinder is placed at the lower half of the enclosure with
a negative value of d at Ra = 104, NuT increases very slowly
with increasing d, meaning that NuT does not depend much
on the variation of d at d < 0 due to increasing effect of con-
vection with increasing Rayleigh number. However, when
d > 0 at Ra = 104, NuT increases very rapidly due to the
increasing effect of d. Thus, if the distance from the inner
cylinder to the top wall decreases with increasing d, the dif-
ference in the value of NuT between Ra = 103 and 104

decreases and NuT at Ra = 104 is almost the same as that
at Ra = 103 when d = 0.2 and 0.25.

When d increases from �0.25 to �0.05 at Ra = 105, NuT

increases slowly due to the slight increase in thermal gradi-
ent on the top wall of the enclosure with decreasing dis-
tance between the inner cylinder and the top wall with
increasing d and the dependence of NuT on d is very low
in this region. However, when d increases to 0 and 0.05
at Ra = 105, the strength of the rising thermal plume
formed around the top surface of the inner cylinder
decreases and the secondary vortices are formed on the
top surface of the inner cylinder. As a result NuT decreases
slightly when d = 0 and 0.05 at Ra = 105. If d increases fur-
ther to values larger than 0.1, the effect of d becomes more
dominant even though secondary vortices exist on the
upper surface of the inner cylinder and as a result NuT

increases again rapidly with increasing d.
The variation of NuT at Ra = 106 is generally similar to

that at Ra = 105. When d increases at Ra = 106, NuT

increases slowly at �0.25 6 d 6 0, decreases at d = 0.05
due to the presence of the strong secondary vortices on
the upper surface of the inner cylinder, and increases again
at 0.05 6 d 6 0.15 due to the increasing effect of the dis-
tance between the inner cylinder and the top wall of the
enclosure in the presence of the secondary vortices. When
d = 0.2 at Ra = 106, NuT decreases again because the pres-
ence of the secondary and tertiary vortices on the upper
surface of the inner cylinder gives more dominant effect
on NuT than d. When d = 0.25 at Ra = 106, NuT increases
to the maximum value because the distance between the



Fig. 13. Surface-averaged Nusselt number as a function of d for four
different Rayleigh number on each wall; (a) top wall, (b) bottom wall and
(c) side wall.

Fig. 14. Total surfaces-averaged Nusselt number of the enclosure, Nuen

and the surface-averaged Nusselt number, NuC of the inner cylinder along
the d for the different Rayleigh numbers.
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inner cylinder and the top wall of the enclosure is smallest
in the absence of the secondary and tertiary vortices.

Fig. 13b shows the surface-averaged Nusselt number at
the bottom wall of the enclosure, NuB, as a function of d for
different Rayleigh numbers. NuB decreases generally with
increasing Rayleigh number due to the increasing effect
of convection. When the distance between the inner cylin-
der and the bottom wall of the enclosure increases with
increasing d, NuB decreases due to the decreasing thermal
gradient on the bottom wall. When 0 6 d 6 0.25, NuB

decreases slowly with increasing d. However, when
�0.25 6 d 6 0, NuB decreases very rapidly with increasing
d, showing the large dependence of NuB on d in this region.
The presence of the secondary and tertiary vortices on the
upper surface of the inner cylinder has some influences on
the distribution of isotherms and their corresponding vari-
ation of NuT. However, the effect of the presence of the
additional vortices on the bottom wall on the distribution
of isotherms and their corresponding variation of NuB is
very small.

Fig. 13c shows the surface-averaged Nusselt number at
the side wall of the enclosure, NuS, as a function of d for
different Rayleigh numbers. NuS also increases generally
with increasing Rayleigh number due to the increasing
effect of convection. However, the effect of d on NuS is
small whereas the effect of Ra on NuS is large, unlike the
cases of NuT and NuB.

Fig. 14 shows the total surfaces-averaged Nusselt num-
ber of the enclosure, Nuen, and the surface-averaged Nusselt
number of the inner cylinder, NuC, as a function of d for
different Rayleigh numbers. Nuen represents the surface-
averaged sum of NuT, NuB and NuS shown in Fig. 13a–c.
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When Ra = 103 and 104, Nuen has a parabolic profile with a
minimum value at d = 0. The value of Nuen at Ra = 104 is
almost the same as that at Ra = 103. However, when the
Rayleigh number increases to 105, the symmetry of Nuen

is broken and Nuen has a minimum value at d = 0.05,
because of the presence of the secondary vortices formed
on the upper surface of the inner cylinder owing to the ris-
ing thermal plumes. The value of Nuen at d = 0.25 is smaller
than that at d = �0.25, because the stagnant region at
d = 0.25 becomes larger than that d = �0.25. When
�0.25 6 d 6 0 at Ra = 106, Nuen decreases with increasing
d, similar to the cases when Ra = 103, 104 and 105. How-
ever, when 0 6 d 6 0.25 at Ra = 106, the variation of
Nuen according to the variation of d is different from that
when Ra = 103, 104 and 105, due to the combined effect
of both the formation of the secondary and tertiary vorti-
ces and the distance between the inner cylinder and top
and bottom walls of the enclosure. With increasing d,
Nuen increases at 0 6 d 6 0.15, decreases at d = 0.2 and
increases again at d = 0.25. The pattern of the variation
of NuC as a function of d is generally similar to that of
Nuen. However, the magnitude of NuC is larger than that
of Nuen for all different cylinder positions because the iso-
therms are formed more densely on the inner cylinder sur-
face than that on the surfaces of the enclosure, as shown in
Figs. 3–7.

4. Conclusions

The present study investigates numerically the charac-
teristics of a two-dimensional natural convection problem
in a cooled square enclosure with an inner heated circular
cylinder. The immersed boundary method was imple-
mented in a second-order accurate finite volume method
to simulate the flow and heat transfer over an inner circular
cylinder in the Cartesian coordinates. A detailed analysis
for the distribution of streamlines, isotherms and Nusselt
number was carried out to investigate the effect of the loca-
tions of the heated inner cylinder on the fluid flow and heat
transfer in the cooled square enclosure for different Ray-
leigh numbers in the range of 103

6 Ra 6 106.
For all Rayleigh numbers considered in the present

study, the flow and thermal fields eventually reach the
steady state with the symmetric shape about the vertical
center line through the center of the inner circular cylinder.
Thus the present problem has a two-fold symmetry about
the vertical center line at x = 0.

At low Rayleigh numbers of 103 and 104, the bifurcation
from the bi-cellular vortices to an uni-cellular vortex occurs
when an inner cylinder is placed at a certain distance from
the center of the enclosure. When Ra = 105 and 106, only
an uni-cellular vortex is formed in the enclosure irrespec-
tive of the position of the inner cylinder. At these high Ray-
leigh numbers, the effect of the inner cylinder position on
fluid flow and heat transfer is significant, especially in the
upper half region. As a result, when Ra = 105, the second-
ary vortices due to the rising thermal plume from the inner
cylinder are present on the upper surface of the inner cylin-
der. When the inner cylinder approaches to the top wall at
Ra = 106, additional vortices are formed near the bottom
wall in addition to the secondary and tertiary vortices
formed near the upper surface of the inner cylinder, due
to the stronger convective force with increasing Rayleigh
number.

The presence of the secondary and tertiary vortices near
the upper surface of the inner cylinder according to the var-
iation of the inner cylinder position and Rayleigh number
has big influences on the distribution of the local and sur-
face-averaged Nusselt numbers. The location of the peak
and the valley of the local Nusselt numbers along the sur-
faces of the inner cylinder and enclosure depends much on
the location of the center of these vortices.

The variation of the total surface-averaged Nusselt
number of the enclosure as a function of d for different
Rayleigh numbers is similar to the surface-averaged Nus-
selt numbers of the inner cylinder. When Ra = 103 and
104, Nuen and NuC have a parabolic profile with a minimum
value at d = 0 and show a symmetric shape around d = 0.
When Ra = 105 and 106, the profiles of Nuen and NuC are
not symmetric due to the presence of the secondary vortices
at Ra = 105 and tertiary vortices in addition to secondary
vortices at Ra = 106 on the upper surface of the inner cyl-
inder caused by the rising plume from the inner cylinder.
The value of NuC is larger than that of Nuen, because the
isotherms are formed more densely on the inner cylinder
surface than that on the surfaces of the enclosure.
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